Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446341

RESUMO

RNA purification and cDNA synthesis represents the starting point for molecular analyses of snake venom proteins-enzymes. Usually, the sacrifice of snakes is necessary for venom gland extraction to identify protein-coding transcripts; however, the venom can be used as a source of transcripts. Although there are methods for obtaining RNA from venom, no comparative analysis has been conducted in the Bothrops genus. In the present study, we compared four commercial methods for RNA purification and cDNA synthesis from venom (liquid, lyophilized, or long-term storage) of four clinically relevant species of Peruvian Bothrops. Our results show that the TRIzol method presents the highest yield of RNA purified from venom (59 ± 11 ng/100 µL or 10 mg). The SuperScript First-Strand Synthesis System kit produced high amounts of cDNA (3.2 ± 1.2 ng cDNA/ng RNA), and the highest value was from combination with the Dynabeads mRNA DIRECT kit (4.8 ± 2.0 ng cDNA/ng RNA). The utility of cDNA was demonstrated with the amplification of six relevant toxins: thrombin-like enzymes, P-I and P-III metalloproteinases, acid and basic phospholipases A2, and disintegrins. To our knowledge, this is the first comparative study of RNA purification and cDNA synthesis methodologies from Bothrops genus venom.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , DNA Complementar/genética , Bothrops/genética , Peru , Relevância Clínica , Venenos de Crotalídeos/genética , Proteínas , RNA
2.
Pharmaceutics ; 15(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242775

RESUMO

From the venom of the Bothrops pictus snake, an endemic species from Peru, we recently have described toxins that inhibited platelet aggregation and cancer cell migration. In this work, we characterize a novel P-III class snake venom metalloproteinase, called pictolysin-III (Pic-III). It is a 62 kDa proteinase that hydrolyzes dimethyl casein, azocasein, gelatin, fibrinogen, and fibrin. The cations Mg2+ and Ca2+ enhanced its enzymatic activity, whereas Zn2+ inhibited it. In addition, EDTA and marimastat were also effective inhibitors. The amino acid sequence deduced from cDNA shows a multidomain structure that includes a proprotein, metalloproteinase, disintegrin-like, and cysteine-rich domains. Additionally, Pic-III reduces the convulxin- and thrombin-stimulated platelet aggregation and in vivo, it has hemorrhagic activity (DHM = 0.3 µg). In epithelial cell lines (MDA-MB-231 and Caco-2) and RMF-621 fibroblast, it triggers morphological changes that are accompanied by a decrease in mitochondrial respiration, glycolysis, and ATP levels, and an increase in NAD(P)H, mitochondrial ROS, and cytokine secretion. Moreover, Pic-III sensitizes to the cytotoxic BH3 mimetic drug ABT-199 (Venetoclax) in MDA-MB-231 cells. To our knowledge, Pic-III is the first SVMP reported with action on mitochondrial bioenergetics and may offer novel opportunities for promising lead compounds that inhibit platelet aggregation or ECM-cancer-cell interactions.

3.
Toxicon ; 223: 107022, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621682

RESUMO

Previous knowledge about the taxonomic distribution of venomous snake species is very useful for epidemiological aspects of ophidism. Here, we sought to develop an assay for the differential identification of clinically relevant snakes in Peru: Bothrops atrox, Lachesis muta, and Crotalus durissus using a multiplex loop-mediated isothermal amplification (mLAMP) assay. For this, DNA was extracted from the shed snake skins and the mitochondrial genes Cytb, COI, and 12S rRNA were amplified and further sequenced, for the design of mLAMP reaction primers. For each snake species the forward and reverse primers, internal forward and reverse primers, and the loop primers were obtained, bearing the latter different fluorophores for product identification. Finally, the reaction was standardized in the presence of all primer sets, and an optimal amount of low molecular weight polyethyleneimine. The precipitated products were observed in a UV light transilluminator, finding a differential fluorescence according to the DNA used, with a detection limit to the naked eye in the range of 0.2-25 ng of DNA, within 30 min. This study is the first report on the use of mLAMP technology for the identification of venomous snakes.


Assuntos
Bothrops , Crotalinae , Animais , Peru , Técnicas de Amplificação de Ácido Nucleico , DNA
4.
Int J Biol Macromol ; 206: 990-1002, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321814

RESUMO

Bothorps atrox is responsible for most of the ophidism cases in Perú. As part of the envenoming, myotoxicity is one of the most recurrent and destructive effects. In this study, a myotoxin, named BaMtx, was purified from B. atrox venom to elucidate its biological, immunological, and molecular characteristics. BaMtx was purified using CM-Sephadex-C-25 ion-exchange resin and SDS-PAGE analysis showed a unique protein band of 13 kDa or 24 kDa under reducing or non-reducing conditions, respectively. cDNA sequence codified a 122-aa mature protein with high homology with other Lys49-PLA2s; modeled structure showed a N-terminal helix, a ß-wing region, and a C-terminal random coil. This protein has a poor phospholipase A2 enzymatic activity. BaMtx has myotoxic (DMM = 12.30 ± 0.95 µg) and edema-forming (DEM = 26.00 ± 1.15 µg) activities. Rabbit immunization with purified enzyme produced anti-BaMtx antibodies that reduced 50.28 ± 10.15% of myotoxic activity and showed significant cross-reactivity against B. brazili and B pictus venoms. On the other hand, BaMtx exhibits mild anti-proliferative and anti-migratory effects on breast cancer cells, affecting the ROS and NADH levels, which may reduce mitochondrial respiration. These results contribute to the understanding of B. atrox Lys49-PLA2 effects and establish the anticancer potential de BaMtx.


Assuntos
Bothrops , Venenos de Crotalídeos , Viperidae , Sequência de Aminoácidos , Animais , Bothrops/metabolismo , Miotoxicidade , Peru , Fosfolipases A2/química , Coelhos , Viperidae/metabolismo
5.
Int J Biol Macromol ; 153: 779-795, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169454

RESUMO

A thrombin-like enzyme, pictobin, was purified from Bothrops pictus snake venom. It is a 41-kDa monomeric glycoprotein as showed by mass spectrometry and contains approx. 45% carbohydrate by mass which could be removed with N-glycosidase. Pictobin coagulates plasma and fibrinogen, releasing fibrinopeptide A and induces the formation of a friable/porous fibrin network as visualized by SEM. The enzyme promoted platelet aggregation in human PRP and defibrination in mouse model and showed catalytic activity on chromogenic substrates S-2266, S-2366, S-2160 and S-2238. Pictobin interacts with the plasma inhibitor α2-macroglobulin, which blocks its interaction with fibrinogen but not with the small substrate BApNA. Heparin does not affect its enzymatic activity. Pictobin cross reacted with polyvalent bothropic antivenom, and its deglycosylated form reduced its catalytic action and antivenom reaction. In breast and lung cancer cells, pictobin inhibits the fibronectin-stimulated migration. Moreover, it produces strong NADH oxidation, mitochondrial depolarization, ATP decrease and fragmentation of mitochondrial network. These results suggest by first time that a snake venom serinprotease produces mitochondrial dysfunction by affecting mitochondrial dynamics and bioenergetics. Structural model of pictobin reveals a conserved chymotrypsin fold ß/ß hydrolase. These data indicate that pictobin has therapeutic potential in the treatment of cardiovascular disorders and metastatic disease.


Assuntos
Plaquetas/metabolismo , Bothrops , Venenos de Crotalídeos/química , Endopeptidases/química , Agregação Plaquetária , Proteínas de Répteis , Animais , Catálise , Fibrinogênio/química , Humanos , Camundongos , alfa 2-Macroglobulinas Associadas à Gravidez/química
6.
Molecules ; 24(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561469

RESUMO

Atroxlysin-III (Atr-III) was purified from the venom of Bothrops atrox. This 56-kDa protein bears N-linked glycoconjugates and is a P-III hemorrhagic metalloproteinase. Its cDNA-deduced amino acid sequence reveals a multidomain structure including a proprotein, a metalloproteinase, a disintegrin-like and a cysteine-rich domain. Its identity with bothropasin and jararhagin from Bothrops jararaca is 97% and 95%, respectively. Its enzymatic activity is metal ion-dependent. The divalent cations, Mg2+ and Ca2+, enhance its activity, whereas excess Zn2+ inhibits it. Chemical modification of the Zn2+-complexing histidine residues within the active site by using diethylpyrocarbonate (DEPC) inactivates it. Atr-III degrades plasma fibronectin, type I-collagen, and mainly the α-chains of fibrinogen and fibrin. The von Willebrand factor (vWF) A1-domain, which harbors the binding site for GPIb, is not hydrolyzed. Platelets interact with collagen via receptors for collagen, glycoprotein VI (GPVI), and α2ß1 integrin. Neither the α2ß1 integrin nor its collagen-binding A-domain is fragmented by Atr-III. In contrast, Atr-III cleaves glycoprotein VI (GPVI) into a soluble ~55-kDa fragment (sGPVI). Thereby, it inhibits aggregation of platelets which had been stimulated by convulxin, a GPVI agonist. Selectively, Atr-III targets GPVI antagonistically and thus contributes to the antithrombotic effect of envenomation by Bothrops atrox.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Venenos de Crotalídeos/enzimologia , Crotalinae , Metaloproteases/farmacologia , Glicoproteínas da Membrana de Plaquetas/biossíntese , Sequência de Aminoácidos , Animais , Crotalinae/metabolismo , Matriz Extracelular , Metaloproteases/química , Metaloproteases/genética , Metaloproteases/isolamento & purificação , Modelos Moleculares , Filogenia , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Glicoproteínas da Membrana de Plaquetas/química , Conformação Proteica , Proteólise , Relação Estrutura-Atividade
7.
Biochimie ; 162: 33-45, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30946947

RESUMO

Snake venoms are a rich source of enzymes such as metalloproteinases, serine proteinases phospholipases A2 and myotoxins, that have been well characterized structurally and functionally. However, hyaluronidases (E.C.3.2.1.35) have not been studied extensively. In this study, we describe the biochemical and molecular features of a hyaluronidase (Hyal-Ba) isolated from the venom of the Peruvian snake Bothrops atrox. Hyal-Ba was purified by a combination of ion-exchange and gel filtration chromatography. Purified Hyal-Ba is a 69-kDa (SDS-PAGE) monomeric glycoprotein with an N-terminal amino acid sequence sharing high identity with homologous snake venom hyaluronidases. Detected associated carbohydrates were hexoses (16.38%), hexosamines (2.7%) and sialic acid (0.69%). Hyal-Ba selectively hydrolyzed only hyaluronic acid (HA; specific activity = 437.5 U/mg) but it did not hydrolyze chondroitin sulfate or heparin. The optimal pH and temperature for maximum activity were 6.0 and 40 °C, respectively, and its Km was 0.31 µM. Its activity was inhibited by EDTA, iodoacetate, 2-mercaptoethanol, TLCK and dexamethasone. Na+ and K+ (0.2 M) positively affect hyaluronidase activity; while Mg2+, Br2+, Ba2+, Cu2+, Zn2+, and Cd2+ reduced catalytic activity. Hyal-Ba potentiates the hemorrhagic and hemolytic activity of whole venom, but decreased subplantar edema caused by an l-amino acid oxidase (LAAO). The Hyal-Ba cDNA sequence (2020 bp) encodes 449 amino acid residues, including the catalytic site residues (Glu135, Asp133, Tyr206, Tyr253 and Trp328) and three functional motifs for N-linked glycosylation, which are conserved with other snake hyaluronidases. Spatial modeling of Hyal-Ba displayed a TIM-Barrel (α/ß) fold and an EGF-like domain in the C-terminal portion. The phylogenetic analysis of Hyal-Ba with other homologous Hyals showed the monophyly of viperids. Further, Hyal-Ba studies may extend our knowledge of B. atrox toxinology and provides insight to improve the neutralizing strategies of therapeutic antivenoms.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos , Hialuronoglucosaminidase , Animais , Sequência de Bases/genética , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/toxicidade , DNA Complementar , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/classificação , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/toxicidade , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Peru , Filogenia , Estabilidade Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
8.
Sci Rep ; 9(1): 781, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692577

RESUMO

Snake venom L-amino acid oxidases (LAAOs) are flavoproteins, which perform diverse biological activities in the victim such as edema, myotoxicity and cytotoxicity, contributing to the development of clinical symptoms of envenomation. LAAO cytotoxicity has been described, but the temporal cascade of events leading to cell death has not been explored so far. This study evaluates the involvement of LAAO in dermonecrosis in mice and its cytotoxic effects in normal human keratinocytes, the major cell type in the epidermis, a tissue that undergoes extensive necrosis at the snakebite site. Pharmacological inhibition by the antioxidant NAC (N-acetyl cysteine) prevented B. atrox venom-induced necrosis. Consistent with the potential role of oxidative stress in wounding, treatment with purified LAAO decreased keratinocyte viability with an Effective Concentration (EC50) of 5.1 µg/mL. Cytotoxicity caused by LAAO was mediated by H2O2 and treated cells underwent autophagy, followed by apoptosis and necrosis. LAAO induced morphological alterations that precede cell death. Our results show the chronological events leading to cell death and the temporal resolution from autophagy, apoptosis and necrosis as distinct mechanisms triggered by LAAO. Fluorescently-labelled LAAO was efficiently and rapidly internalized by keratinocytes, suggesting that catalysis of intracellular substrates may contribute to LAAO toxicity. A better understanding of LAAO cytotoxicity and its mechanism of action will help to identify potential therapeutic strategies to ameliorate localized snake envenomation symptoms.


Assuntos
Bothrops/metabolismo , Queratinócitos/citologia , L-Aminoácido Oxidase/toxicidade , Pele/patologia , Venenos de Serpentes/enzimologia , Acetilcisteína/farmacologia , Animais , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Camundongos , Necrose , Estresse Oxidativo/efeitos dos fármacos , Pele/efeitos dos fármacos
9.
J Proteomics ; 187: 171-181, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30048773

RESUMO

In order to determine Bothriopsis bilineata smaragdina venom (BbsV) composition, proteomic approaches were performed. Venom components were analyzed by RP-HPLC, SDS- PAGE and nano LC on line with LTQ Orbitrap XL. Results showed a total of 189 identified proteins, grouped into 11 different subgroups, which include snake venom metalloproteinases (SVMPs, 54.67%), snake C-type lectins (Snaclecs, 15.78%), snake venom serine proteinases (SVSPs, 14.69%), cystein-rich secretory proteins (CRISP, 2.61%), phospholipases A2 (PLA2, 1.14%), phosphodiesterase (PDE, 1.17%), venom endothelial growth factor (VEGF, 1.06%) 5'nucleotidases (0.33%), L-amino acid oxidases (LAAOs, 0.28%) and other proteins. In vitro enzymatic activities (SVMP, SVSP, LAAO, Hyal and PLA2) of BbsV were also analyzed. BbsV showed high SVSP activity but low PLA2 activity, when compared to other Bothrops venoms. In vivo, BbsV induced hemorrhage and edema in mice and showed intraperitoneal median lethal dose (LD50) of 92.74 (± 0.15) µg/20 g of mice. Furthermore, BbsV reduced cell viability when incubated with VERO cells. Peruvian and Brazilian bothropic antivenoms recognize BbsV proteins, as detected by ELISA and Western Blotting. Both antivenoms were able to neutralize in vivo edema and hemorrhage. SIGNIFICANCE: In Peru, snakebite is a public health problem, especially in the rain forest, as a result of progressive colonization of this geographical area. This country is the second in Latin America, after Brazil, to exhibit the largest variety of venomous snakes. B. atrox and B. b. smaragdina snakes are sympatric species in Peruvian Amazon region and are responsible for approximately 95% of the envenomings reported in this region. B. b. smaragdina may cause a smaller share (3 to 38%) of those accidents, due to its arboreal habits, that make human encounters with these snakes less likely to happen. Despite B. b. smaragdina recognized medical importance, its venom composition and biological activities have been poorly studied. Furthermore, BbsV is not a component of the antigenic pool used to produce the corresponding Peruvian bothropic antivenom (P-BAV). Our results not only provide new insights on BbsV composition and biological activity, but also demonstrate that both P-BAV and B-BAV polyvalent antivenoms have a considerable recognition of proteins from BbsV and, more importantly, neutralized hemorrhage and edema, the main local effects of bothropic envenomation.


Assuntos
Antivenenos/análise , Bothrops , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/metabolismo , Venenos de Crotalídeos/farmacologia , Animais , Antivenenos/metabolismo , Chlorocebus aethiops , Venenos de Crotalídeos/análise , Feminino , Hemorragia/induzido quimicamente , Hemorragia/patologia , L-Aminoácido Oxidase/análise , L-Aminoácido Oxidase/metabolismo , Dose Letal Mediana , Metaloproteases/análise , Metaloproteases/metabolismo , Camundongos , Peru , Fosfolipases A2/análise , Fosfolipases A2/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica , Serina Proteases/análise , Serina Proteases/metabolismo , Células Vero
10.
Toxicon ; 139: 74-86, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024770

RESUMO

An L-amino acid oxidase from Peruvian Bothrops pictus (Bpic-LAAO) snake venom was purified using a combination of size-exclusion and ion-exchange chromatography. Bpic-LAAO is a homodimeric glycosylated flavoprotein with molecular mass of ∼65 kDa under reducing conditions and ∼132 kDa in its native form as analyzed by SDS-PAGE and gel filtration chromatography, respectively. N-terminal amino acid sequencing showed highly conserved residues in a glutamine-rich motif related to binding substrate. The enzyme exhibited optimal activity towards L-Leu at pH 8.5, and like other reported SV-LAAOs, it is stable until 55 °C. Kinetic studies showed that the cations Ca2+, Mg2+ and Mn2+ did not alter Bpic-LAAO activity; however, Zn2+ is an inhibitor. Some reagents such as ß-mercaptoethanol, glutathione and iodoacetate had inhibitory effect on Bpic-LAAO activity, but PMSF, EDTA and glutamic acid did not affect its activity. Regarding the biological activities of Bpic-LAAO, this enzyme induced edema in mice (MED = 7.8 µg), and inhibited human platelet aggregation induced by ADP in a dose-dependent manner and showed antibacterial activity on Gram (+) and Gram (-) bacteria. Bpic-LAAO cDNA of 1494 bp codified a mature protein with 487 amino acid residues comprising a signal peptide of 11 amino acids. Finally, the phylogenetic tree obtained with other sequences of LAAOs, evidenced its similarity to other homologous enzymes, showing two well-established monophyletic groups in Viperidae and Elapidae families. Bpic-LAAO is evolutively close related to LAAOs from B. jararacussu, B. moojeni and B. atrox, and together with the LAAO from B. pauloensis, form a well-defined cluster of the Bothrops genus.


Assuntos
Venenos de Crotalídeos/enzimologia , L-Aminoácido Oxidase/química , L-Aminoácido Oxidase/isolamento & purificação , Sequência de Aminoácidos , Animais , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bothrops , Venenos de Crotalídeos/toxicidade , Feminino , Humanos , L-Aminoácido Oxidase/antagonistas & inibidores , Masculino , Camundongos , Peru , Filogenia , Agregação Plaquetária/efeitos dos fármacos , Relação Estrutura-Atividade
11.
Toxicon ; 122: 67-77, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27641748

RESUMO

Snakebite envenoming is a neglected public pathology, affecting especially rural communities or isolated areas of tropical and subtropical Latin American countries. The parenteral administration of antivenom is the mainstay and the only validated treatment of snake bite envenoming. Here, we assess the efficacy of polyspecific anti-Bothrops serum (α-BS) produced in the Instituto Nacional de Salud (INS, Peru) and at the Fundação Ezequiel Dias (FUNED, Brazil), to neutralize the main toxic activities induced by five medically-relevant venoms of: Bothrops atrox, B. barnetti, and B. pictus from Peru, and the Brazilian B. jararaca and B. leucurus, all of them inhabiting different geographical locations. Protein electrophoretic patterns of these venoms showed significant differences in composition, number and intensity of bands. Another goal was to evaluate the efficacy and safety of lyophilized α-BS developed at INS to neutralize the detrimental effects of these venoms using in vivo and in vitro assays. The availability of lyophilized α-BS has relevant significance in its distribution to distant rural communities where the access to antivenom in health facilities is more difficult. Despite the fact that different antigen mixtures were used for immunization during antivenom production, our data showed high toxin-neutralizing activity of α-BS raised against Bothrops venoms. Moreover, the antivenom cross-reacted even against venoms not included in the immunization mixture. Furthermore, we have evaluated the efficacy of both α-BS to neutralize key toxic compounds belonging to the predominant protein families of Bothrops snakes. Most significantly, both α-BS cross-specifically neutralized the main toxicological activities e.g. lethality and hemorrhage induced by these venoms. Thus, our data indicate that both α-BS are equally effective to treat snake bite victims inflicted by Bothrops snakes particularly B. atrox, responsible for the largest numbers of human envenomations in the Amazon regions of some South American countries including Peru and Brazil.


Assuntos
Antivenenos/uso terapêutico , Venenos de Crotalídeos/toxicidade , Brasil , Venenos de Crotalídeos/antagonistas & inibidores , Eletroforese em Gel de Poliacrilamida , Testes de Neutralização , Peru
12.
Data Brief ; 7: 1609-13, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27222863

RESUMO

Initial association of platelets after vascular injury is mediated by glycoprotein (GP)Ib-IX-V binding to von Willebrand factor (vWf) immobilized on exposed collagens and eventually leads to thrombus formation. This article provides data about a new P-I class snake venom metalloproteinase (SVMP), barnettlysin-I (Bar-I), purified from the venom of Bothrops barnetti. This Data in Brief manuscript complements the main research article by providing additional data of the biochemical characterization of Bar-I 10.1016/j.bbagen.2015.12.021[1].

13.
Biochim Biophys Acta ; 1860(3): 542-56, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26723171

RESUMO

BACKGROUND: Viperid snake venoms contain active components that interfere with hemostasis. We report a new P-I class snake venom metalloproteinase (SVMP), barnettlysin-I (Bar-I), isolated from the venom of Bothrops barnetti and evaluated its fibrinolytic and antithrombotic potential. METHODS: Bar-I was purified using a combination of molecular exclusion and cation-exchange chromatographies. We describe some biochemical features of Bar-I associated with its effects on hemostasis and platelet function. RESULTS: Bar-I is a 23.386 kDa single-chain polypeptide with pI of 6.7. Its sequence (202 residues) shows high homology to other members of the SVMPs. The enzymatic activity on dimethylcasein (DMC) is inhibited by metalloproteinase inhibitors e.g. EDTA, and by α2-macroglobulin. Bar-I degrades fibrin and fibrinogen dose- and time-dependently by cleaving their α-chains. Furthermore, it hydrolyses plasma fibronectin but not laminin nor collagen type I. In vitro Bar-I dissolves fibrin clots made either from purified fibrinogen or from whole blood. In contrast to many other P-I SVMPs, Bar-I is devoid of hemorrhagic activity. Also, Bar-I dose- and time-dependently inhibits aggregation of washed human platelets induced by vWF plus ristocetin and collagen (IC50=1.3 and 3.2 µM, respectively), presumably Bar-I cleaves both vWF and GPIb. Thus, it effectively inhibits vWF-induced platelet aggregation. Moreover, this proteinase cleaves the collagen-binding α2-A domain (160 kDa) of α2ß1-integrin. This explains why it additionally inhibits collagen-induced platelet activation. CONCLUSION: A non-hemorrhagic but fibrinolytic metalloproteinase dissolves fibrin clots in vitro and impairs platelet function. GENERAL SIGNIFICANCE: This study provides new opportunities for drug development of a fibrinolytic agent with antithrombotic effect.


Assuntos
Bothrops , Venenos de Crotalídeos/enzimologia , Fibrinolíticos/farmacologia , Metaloproteases/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Sequência de Aminoácidos , Animais , Fibrinolíticos/química , Integrina alfa2beta1/metabolismo , Metaloproteases/isolamento & purificação , Dados de Sequência Molecular , Inibidores da Agregação Plaquetária/química , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
14.
Rev. peru. med. exp. salud publica ; 32(4): 652-658, oct.-dic. 2015. ilus, graf
Artigo em Espanhol | LILACS, LIPECS, INS-PERU | ID: lil-790773

RESUMO

Realizar una caracterización bioquímica y molecular del principio coagulante del veneno de Bothrops pictus. Materiales y métodos. Se realizó la amplificación del gen a partir de cDNA, se analizó la homología de la secuencia nucleotídica y de la proteína deducida. Se procedió a purificar la enzima para los análisis de secuenciación directa N terminal de los primeros 20 aminoácidos y los ensayos de coagulación sobre plasma humano y fibrinógeno humano, por otro lado, se evaluó el patrón de corte del fibrinógeno por medio de PAGE SDS y la actividad defibrinogenante en roedores albinos (18-22 g). Se determinó el contenido de carbohidratos asociados, el efecto de inhibidores clásicos de proteasas y el efecto de iones bajo la forma de cloruros. Resultados. La enzima mostró homología en la estructura primaria con otras TLEs reportadas para la familia Viperidae, la dosis coagulante mínima (DCM) sobre plasma y fibrinógeno humano fue de 18 y 6 ug respectivamente y su potencia coagulante fue de 131,1 NHI unidades de trombina. La enzima se mostró estable a condiciones fisiológicas y prescinde de iones para su actividad. Los carbohidratos asociados detectados fueron hexosas (25,76%), hexosaminas (13,1%) y ácido siálico (0,76%). Los agentes fluoruro de fenil metil sulfonil floruro (PMSF) ditiotreitol (DTT) fueron los principales inhibidores de la actividad enzimática en tanto que la heparina no tuvo efecto inhibidor. Conclusiones. El principio coagulante del veneno de Bothrops pictus es una enzima similar a trombina...


To perform a biochemical and molecular characterization of the coagulant principle from Bothrops pictus venom. Materials and methods. We amplified the genetic sequence of this enzyme from cDNA and analyzed the homology of its nucleotide sequence and its deduced protein. This enzyme was also purified for N-terminal sequencing of first 20 amino acids and for coagulation assays using human plasma and human fibrinogen. Furthermore, cleavage pattern on fibrinogen was evaluated using SDS-PAGE and defibrinogenant activity on white mice (18-22 g). Finally, associated carbohydrate content, effect of protease inhibitors and chloride ions on its enzymatic activity were analyzed. Results. The Thrombin-like Enzyme from Bothrops pictus showed homology at primary level of structure with other previously reported TLEs from Viperidae family. Minimum Coagulant Dosis (MCD) on plasma and human fibrinogen were 18 and 6 ug, respectively, and its coagulant potency was 131.1 NHI Thrombin units. This TLE was stable under physiological conditions and chloride ions are not necessary for its activity. Detected associated carbohydrates were hexoses (25.76%), hexosamines (13.12%) and sialic acid (0.76%). Phenyl methyl sulphonyl fluoride (PMSF) and dithiothreitol (DTT) were the main inhibitors of its enzymatic activity, but heparin had no inhibitor effect. Conclusions. The coagulant principle of Bothrops pictus venom is a Thrombin-like enzyme...


Assuntos
Humanos , Bothrops , Coagulação Sanguínea , Fibrinogênio , Trombina , Venenos de Serpentes
15.
Rev Peru Med Exp Salud Publica ; 32(4): 652-8, 2015 Oct.
Artigo em Espanhol | MEDLINE | ID: mdl-26732911

RESUMO

OBJECTIVES: To perform a biochemical and molecular characterization of the coagulant principle from Bothrops pictus venom. MATERIALS AND METHODS: We amplified the genetic sequence of this enzyme from cDNA and analyzed the homology of its nucleotide sequence and its deduced protein. This enzyme was also purified for N-terminal sequencing of first 20 amino acids and for coagulation assays using human plasma and human fibrinogen. Furthermore, cleavage pattern on fibrinogen was evaluated using SDS-PAGE and defibrinogenant activity on white mice (18-22 g). Finally, associated carbohydrate content, effect of protease inhibitors and chloride ions on its enzymatic activity were analyzed. RESULTS: The Thrombin-like Enzyme from Bothrops pictus showed homology at primary level of structure with other previously reported TLEs from Viperidae family. Minimum Coagulant Dosis (MCD) on plasma and human fibrinogen were 18 and 6 µg, respectively, and its coagulant potency was 131.1 NHI Thrombin units. This TLE was stable under physiological conditions and chloride ions are not necessary for its activity. Detected associated carbohydrates were hexoses (25.76%), hexosamines (13.12%) and sialic acid (0.76%). Phenyl methyl sulphonyl fluoride (PMSF) and dithiothreitol (DTT) were the main inhibitors of its enzymatic activity, but heparin had no inhibitor effect. CONCLUSIONS: The coagulant principle of Bothrops pictus venom is a Thrombin-like enzyme.


Assuntos
Bothrops , Venenos de Crotalídeos/química , Trombina/química , Animais , Venenos de Crotalídeos/farmacologia , Eletroforese em Gel de Poliacrilamida , Fibrinogênio , Humanos , Camundongos
16.
Biochimie ; 95(7): 1476-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23578498

RESUMO

The thrombin-like enzyme from Bothrops barnetti named barnettobin was purified. We report some biochemical features of barnettobin including the complete amino acid sequence that was deduced from the cDNA. Snake venom serine proteases affect several steps of human hemostasis ranging from the blood coagulation cascade to platelet function. Barnettobin is a monomeric glycoprotein of 52 kDa as shown by reducing SDS-PAGE, and contains approx. 52% carbohydrate by mass which could be removed by N-glycosidase. The complete amino acid sequence was deduced from the cDNA sequence. Its sequence contains a single chain of 233 amino acid including three N-glycosylation sites. The sequence exhibits significant homology with those of mammalian serine proteases e.g. thrombin and with homologous TLEs. Its specific coagulant activity was 251.7 NIH thrombin units/mg, releasing fibrinopeptide A from human fibrinogen and showed defibrinogenating effect in mouse. Both coagulant and amidolytic activities were inhibited by PMSF. N-deglycosylation impaired its temperature and pH stability. Its cDNA sequence with 750 bp encodes a protein of 233 residues. Indications that carbohydrate moieties may play a role in the interaction with substrates are presented. Barnettobin is a new defibrinogenating agent which may provide an opportunity for the development of new types of anti-thrombotic drugs.


Assuntos
Bothrops/metabolismo , Coagulantes/química , DNA Complementar/química , Trombina/química , Peçonhas/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Coagulação Sanguínea , Coagulantes/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Camundongos , Dados de Sequência Molecular , Análise de Sequência , Trombina/metabolismo , Peçonhas/farmacologia
17.
Rev Peru Med Exp Salud Publica ; 29(3): 396-401, 2012.
Artigo em Espanhol | MEDLINE | ID: mdl-23085804

RESUMO

Cancer can develop to the extent tumor cells grow, divide and grow into other body tissues. Integrins are a family of cell-surface heterodimeric receptors that play an important role in the development of tumor angiogenesis, growth and metastasis, thus being recognized as an attractive therapeutic target. Snake venom contains low-molecular weight peptides known as "disintegrins" that bind to integrins with high affinity, and prevent their action in cancer. In the next article, we go over the results of investigations, both in vitro and in vivo, which have shown promising results, thus revealing that the use of disintegrins could be a promising alternative for the treatment of different neoplasias.


Assuntos
Desintegrinas/farmacologia , Desintegrinas/uso terapêutico , Integrinas/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Venenos de Serpentes , Desintegrinas/análise , Humanos , Integrinas/fisiologia , Neoplasias/etiologia , Neovascularização Patológica , Venenos de Serpentes/química
18.
Rev. peru. med. exp. salud publica ; 29(3): 396-401, jul.-sept. 2012. ilus, tab
Artigo em Espanhol | LILACS, LIPECS | ID: lil-653974

RESUMO

El desarrollo del cáncer es posible en la medida que las células tumorales proliferen, se dispersen e invadan otros tejidos del cuerpo. Las integrinas son una familia de receptores heterodiméricos de superficie celular que cumplen un papel crucial en el desarrollo de la angiogénesis, crecimiento y metástasis de un tumor señalándolas como un atractivo blanco terapéutico. Los venenos de serpientes contienen péptidos de bajo peso molecular conocidos como desintegrinas, las que se unen con una alta afinidad a las integrinas e inhiben su accionar en un proceso cancerígeno. En el siguiente articulo revisamos los resultados de investigaciones, tanto in vitro como in vivo, que han mostrado resultados promisorios, por lo cual el uso de las desintegrinas podrían constituir una alternativa promisoria para el tratamiento de diversas neoplasias.


Cancer can develop to the extent tumor cells grow, divide and grow into other body tissues. Integrins are a family of cell-surface heterodimeric receptors that play an important role in the development of tumor angiogenesis, growth and metastasis, thus being recognized as an attractive therapeutic target. Snake venom contains low-molecular weight peptides known as “disintegrins” that bind to integrins with high affinity, and prevent their action in cancer. In the next article, we go over the results of investigations, both in vitro and in vivo, which have shown promising results, thus revealing that the use of disintegrins could be a promising alternative for the treatment of different neoplasias.


Assuntos
Humanos , Desintegrinas/farmacologia , Desintegrinas/uso terapêutico , Integrinas/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Venenos de Serpentes , Desintegrinas/análise , Integrinas/fisiologia , Neoplasias/etiologia , Neovascularização Patológica , Venenos de Serpentes/química
19.
Rev Peru Med Exp Salud Publica ; 29(2): 198-205, 2012 Jun.
Artigo em Espanhol | MEDLINE | ID: mdl-22858765

RESUMO

OBJECTIVES: To study the variability in the composition and enzymatic activity of venom from adult Bothrops atrox specimens. MATERIALS AND METHODS: We used venoms from adult snakes from Amazonas, Junín and Ucayali. Each of the venom samples underwent analysis for protein and number of bands by pagesds. Phospholipase A2, hemolytic, amidolytic, coagulant, hemorrhagic activity were analyzed, also and proteolytic activity on casein and by zymogram. Additionally, immunodiffusion and neutralization assays in vitro were done with a polyvalent botropic serum from the national institute of health of Peru. RESULTS: The amidolytic, coagulant, hemorrhagic, proteolytic by zymogram, phospholipase A2, and indirect hemolytic activity were variable, demonstrating increased activity in the venoms from Amazonas, regarding proteolytic by zymogram, phospholipase A2, and indirect hemolytic activity. While the amount of protein electrophoretic bands and proteolytic activity on casein did not demonstrated differences. Regarding neutralization tests, a 0.5 dose of antivenom was sufficient to effectively neutralize (>50%) the coagulant activity and phospholipase A2 of all samples analyzed. CONCLUSIONS: Some biological properties of the venom from adult Bothrops atrox of Peru are variable, without interference with the in vitro neutralization by the polyvalent botropic serum on coagulant and phospholipase A2 properties of the venom.


Assuntos
Bothrops , Venenos de Crotalídeos/enzimologia , Animais , Peru
20.
Toxicon ; 60(6): 1018-21, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22796381

RESUMO

Bothrops andianus is a venomous snake found in the area of Machu Picchu (Peru). Its venom is not included in the antigenic pool used for production of the Peruvian anti-bothropic anti-venom. B. andianus venom can elicit many biological effects such as hemorrhage, hemolysis, proteolytic activity and lethality. The Peruvian anti-bothropic anti-venom displays consistent cross-reactivity with B. andianus venom, by ELISA and Western Blotting and is also effective in neutralizing the venom's toxic activities.


Assuntos
Antivenenos/farmacologia , Venenos de Serpentes/química , Animais , Western Blotting , Bothrops , Reações Cruzadas , Avaliação Pré-Clínica de Medicamentos , Ensaio de Imunoadsorção Enzimática , Feminino , Hemólise/efeitos dos fármacos , Hemorragia/fisiopatologia , Masculino , Camundongos , Peru , Proteólise/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...